

Quantifying pulmonary vein antrum contact area with novel dual-sized cryoballoon to optimize pulmonary vein isolation

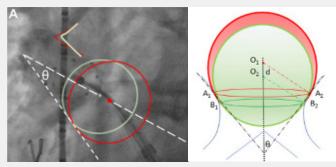
CLINICAL PERSPECTIVE

WHAT'S NEW

This is the first study that has aimed to correlate differences in ablation area to the intraprocedural performance of POLARx[™] FIT using geometric models.

WHAT'S IMPORTANT

The study demonstrates that the 31mm size has enlarged balloon-antrum contact, suggesting greater substrate modification.


OBJECTIVE

Using geometric models, they aimed to correlate differences in ablation area to the intraprocedural performance of the POLARx FIT cryoballoon.

METHODS

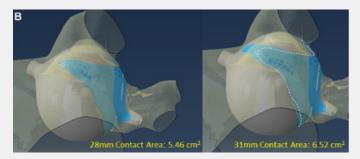

- Quantitative analysis of balloon-tissue contact during PVI was done for 8 patients from the FROzEN-AF trial (NCT04133168) who underwent de novo cryoablation with the POLARx FIT cryoballoon.
- Venography with continuous injection of contrast was performed while the cryoballoon was inflated from 28mm to 31mm, maintaining grade 4 occlusion, and cine images were used to build 2-dimensional (2D) and 3-dimensional (3D) models to estimate the contact area differences between the 2 balloon sizes.
- In the 2D model, the cine images were overlapped, and a line of centers and outer tangent line (connecting to the contact point where the balloon met the PV/PV antrum) were drawn (Figure 1, left image). The angle (θ) between these 2 lines and the distance between 2 centres (d) were measured. The differences in PV antrum contact area between balloon sizes were calculated with a formula*, derived from the lateral surface area of a cone (Figure 1, right image).

Figure 1.

* Δ Contact area (cm²) = 2.95 π cos $\sqrt{d^2 \cos^4\theta + (0.15 \cos)^2}$

Figure 2.

Figure 2:

Example of contact area increase. B: 3-dimensional model of cryoballoon-PV antrum interface and contact area in side view (shaded blue) with a 28mm (left) and a 31mm (right) cryoballoon in the left inferior PV of one patient. The white dashed line is the projection of 28mm cryoballoon contact area: the difference in contact area between the 2 balloon sizes was 1.06 cm².

Figure 1:

Modelling of cryoballoon-pulmonary vein (PV) antrum contact area. A: Cine images (left) of PV engagement with a 28mm (green circle) and a 31mm (red circle) cryoballoon overlapped to build a 2-dimensional model to calculate cryoballoon-PV antrum contact area as surface area of a cone (right).

RESULTS

- Successful cryoballoon PVI was achieved in all PVs with no procedure-related adverse events.
- Using the 2D model, the 31mm cryoballoon showed an increased PV antrum contact area of 1.68 ± 0.92cm² with a mean 0.28 ± 0.11cm proximal displacement of the balloon's centre.
- The 3D model assumptions for balloon shape were successfully met for 6 of 8 PVs and PV antrum contact area increased by 1.35 ± 0.67cm² with the 31mm cryoballoon, 14.4% greater than that with the 28mm cryoballoon (see example of contact area increase in Figure 2, on the previous page).
- Of the 8 patients included in this study, 7 were free from AF at 1-year follow-up. One patient had recurrent typical atrial flutter and frequent premature atrial contraction that was treated by redo ablation.

CONCLUSION

The expandable size feature of the POLARx[™] FIT cryoballoon allows more proximal antrum engagement and increased ablation area when inflated from 28mm to 31mm in dimension without exchanging the catheter.

This feature may lead to a higher rate of single-shot PV isolation as well as reduce the risk of PV stenosis and phrenic nerve injury.

The 31mm POLARx FIT cryoballoon size is associated with a higher rate of complete PV occlusion and enlarged balloon-antrum contact area as demonstrated in this study. This suggests greater substrate modification: another determinant of long-term sinus rhythm maintenance after AF ablation.

Advancing science for life[™]

www.bostonscientific.eu

© 2024 Boston Scientific Corporation or its affiliates. All rights reserved.

EP-1995501-AA

Liao Y., et al., 2024 doi.org/10.1016/j.hrthm.2024.05.047

CAUTION: The law restricts these devices to sale by or on the order of a physician. Indications, contraindications, warnings, and instructions for use can be found in the product labelling supplied with each device or at www.IFU-BSCL.com. Products shown for INFORMATION purposes only and may not be approved or for sale in certain countries. This material not intended for use in France.