One-year Outcomes of ACURATE *neo2* vs Approved TAVR Devices in All-risk Patients with Severe AS: **the ACURATE IDE Trial**

Michael Reardon, MD

Houston Methodist DeBakey Heart & Vascular Center Houston, TX

On behalf of the ACURATE IDE Investigators

Disclosure of Relevant Financial Relationships

Within the prior 24 months, I have had a relevant financial relationship with a company producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients:

Nature of Financial Relationship

Consultant Fees/Honoraria

Ineligible Company

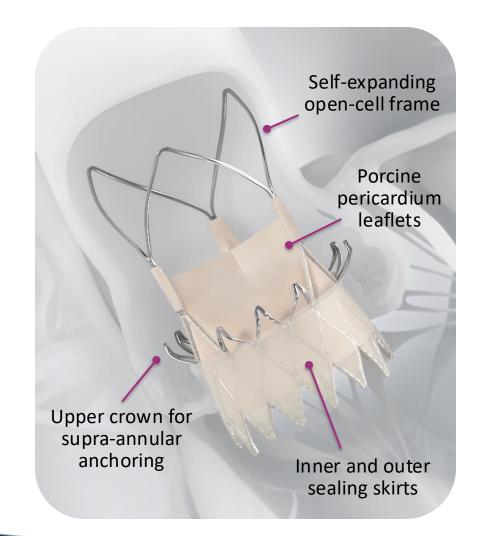
Boston Scientific, Medtronic, Abbott, Gore Medical, Anteris, J Valve

All relevant financial relationships have been mitigated. Faculty disclosure information can be found on the app

Background Clinical Experience

ACURATE *neo2* Aortic Valve System is commercially available in 60+ countries (outside US) with 80,000+ patients treated with the ACURATE Platform globally

Post-market study/registry :	ACURATE <i>neo2</i> PMCF N=250		Early neo2 Registry ³ N=554	PROVE Registry ⁴ N=1044	
	30 days ¹	1 year ²	30 Days	30 Days	
All-cause Mortality	0.8%	5.1%	1.3%	1.4%	
All Stroke	0.8%	3.0%	2.7%	2.2%	
Rehospitalization	0%	1.7%	3.0%		
New Pacemaker*	6.5%	8.3%	6.2%	9.3%	
AV Gradient	8.6 mmHg	7.6 mmHg	7.6 mmHg	6.8 mmHg (at discharge)	
PVL ≥ Moderate	1.9%	0.6%	2.8%	3.4%	


*Among patients without a pacemaker at baseline

The ACURATE IDE trial evaluates ACURATE *neo2* vs select commercially available balloon-expandable (SAPIEN 3 or newer) or self-expanding (Evolut or newer) devices

m WK, et al. EuroIntervention 2023;19:83-92. ²Kim WK, et al. EuroIntervention 2024;20:85-94. ³Ruck A, et al. J Am Heart Assoc. 2023;12:e029464. ⁴Thiele H. Presented at EuroPCR May 2024.

ACURATE neo2 Valve Design

Unique frame design

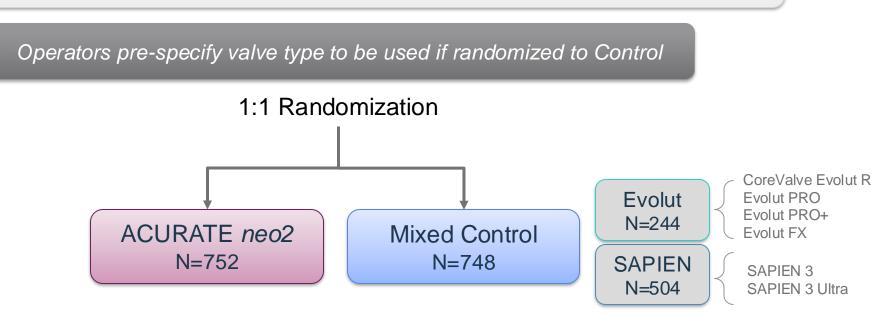
- Self-expanding Nitinol frame with top-down deployment
- Open-cell design with axial stabilization arches
- Supports unrestricted coronary access¹ & predictable commissure alignment²

Supra-annular leaflet positioning

Designed to provide large EOAs and low gradients³

Inner and outer sealing skirts

Dynamic sealing to mitigate PVL⁴


Technical Specs

- Available sizes: 23 mm (S), 25 mm (M), 27 mm (L)
- **Pre-dilation required:** recommended balloon size is 1 mm smaller than perimeter-derived annular diameter

ACURATE IDE Trial Design

Prospective, multicenter, randomized study N=1500 patients with symptomatic severe native aortic stenosis indicated for TAVR

> Primary Endpoint: Composite of all-cause mortality, stroke or rehospitalization[†] at 1 year

Follow-Up: Discharge/7d post-procedure, 30d, 6mo, 1-10y post-procedure

CRF^{*}

ACURATE IDE Trial Administration

Principal Investigators		Top Enrolling Sites			
Michael Reardon, MD	Raj Makkar, MD	Enrollment rank	Investigator(s)	Clinical Site	
Core Laboratories		1	Raj R Makkar	Cedars-Sinai Medical Center	
	or Clinical Research hael Gibson, MD	2	Eric Gnall Basel Ramlawi	Lankenau Medical Center	
Echocardiography: Cardialysis		3	Ravi Ramana	Advocate Christ Medical Center	
Director: Claire	B. Ren, MD, PhD itish Columbia	4	Pantelis Diamantouros	London Health Sciences Center	
	Blanke, MD; Jonathon Leipsic, MD	5	Srinivasa Potluri	Baylor Scott and White Heart Hospital	
Data Monitoring Committee		6	Sanjay Samy	Albany Medical Center	
W. Douglas Weaver, MD < Chair>	Frederick Grover, MD	6	Neal Kleiman Michael Reardon	Houston Methodist Hospital	
-	F.W.A. Verheugt, MD Jan Tijssen, PhD	8	Andrew Rassi	Kaiser Permanente San Francisco Medical Center	
		9	Vivek Rajagopal Vinod Thourani	Piedmont Heart Institute	
Clinical Events Committee	9	10	Steven J Yakubov	OhioHealth Riverside Methodist Hospital	
Andreas Baumbach, MD <i><chair></chair></i> Jean-Marie Annoni, MD	Nikolaus Löffelhardt, MD	11	Apurva Badheka	Providence Regional Medical Center Everett	
Evald Christiansen, MD	Felix Mahfoud, MD	11	Paul Sorajja	Abbott Northwestern Hospital	
	Friedrich Medlin, MD Thierry Royer, MD José Ramón Rumoroso, MD	13	Santiago Garcia	Lindner Center for Research and Education	
		14	John Wang	Medstar Union Memorial Hospital	
Oliver Guttmann, MDBernard Valeix, MDRaban Jeger, MDRoberto Violini, MD		15	Michael J Rinaldi	Sanger Heart and Vascular Institute	

Key Inclusion Criteria

Severe Symptomatic Aortic Stenosis

- AVA $\leq 1.0 \text{ cm}^2 \text{ or AVA index} \leq 0.6 \text{ cm}^2/\text{m}^2$
- AND mean gradient ≥ 40 mmHg or max AV velocity ≥ 4.0 m/s or Doppler velocity index ≤0.25
- NYHA Functional Class ≥ II
- Heart Team agreement that subject is indicated for TAVR

Documented aortic annulus size of ≥21 mm and ≤27 mm

 Based on the center assessment of pre-procedure diagnostic imaging and confirmed by the Case Review Committee

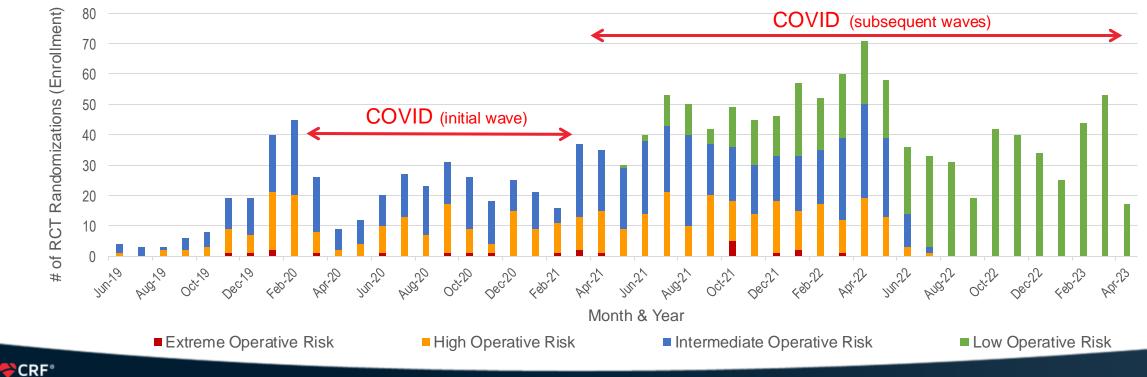
Key Exclusion Criteria

Anatomic

- Unicuspid or bicuspid valve
- Pre-existing prosthetic aortic or mitral valve
- Severe (4+) aortic, tricuspid, or mitral regurgitation
- Moderate or severe mitral stenosis (mitral valve area ≤1.5 cm² and diastolic pressure half-time ≥150 ms, Stage C or D⁴)
- Severe LV dysfunction (LVEF < 20%)
- Severe/eccentric calcification of aortic annulus
- Hypertrophic cardiomyopathy
- Severe vascular disease or vascular anatomy not suitable for safe arterial access

Clinical

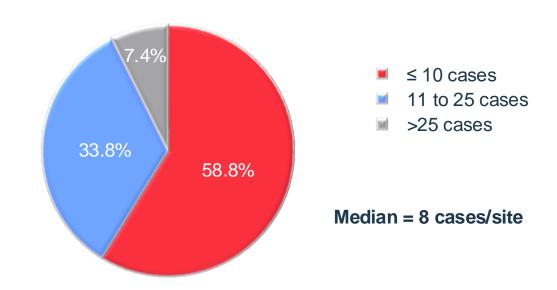
- Acute MI within 1 month
- Stroke or TIA within 6 months
- Renal insufficiency (eGFR < 20 ml/min) and/or renal replacement therapy
- History of endocarditis within 6 months or active systemic infection or sepsis
- Hemodynamic or respiratory instability
- Untreated coronary artery disease
- Untreated conduction system disorder
- Life expectancy <12 months due to non-cardiac, comorbid conditions


Statistical Methods

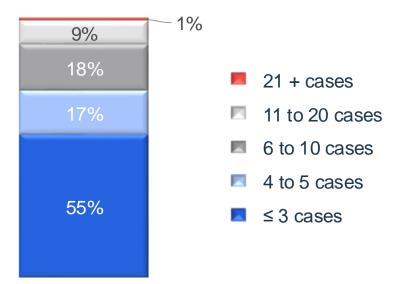
Primary hypothesis	Non-inferiority of ACURATE <i>neo2</i> vs Control for the primary endpoint of all-cause mortality, stroke or rehospitalization [†] at 1			
	Non-inferiority test performed using Bayesian method; ITT population			
Expected rate	22.3% for both arms			
	 Based on a weighted average of historical TAVR data* 			
Non-inferiority margin (Δ)	8%			
	36% relative to expected rate			
One-sided alpha (α)	0.025			
Power	>90%			
Sample size	1,500 subjects (750 per arm)			
CRF [*]	Assumes 5% attrition			
	me-Risk & High-Risk, Evolut Low-Risk, SURTAVI, PARTNER (I, II, 2A, 3), LRT (all devices)			

[†]Hospitalization for valve-related symptoms or worsening congestive heart failure (NYHA class III or IV); per VARC-2 definition

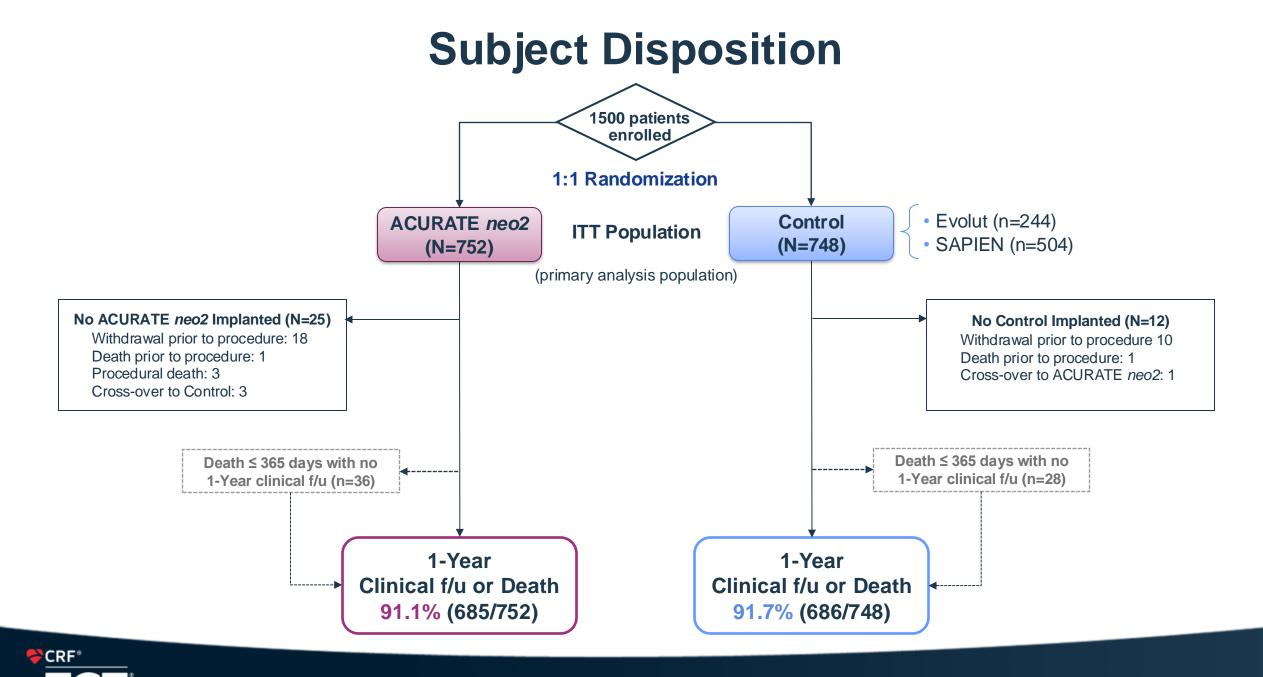
Trial Enrollment Timeline


- 1500 RCT subjects enrolled at 70 centers in United States and Canada
- Enrollment occurred over a 47-month period, with higher risk patients enrolled earlier in the trial

Total RCT Enrollment by Month & by Risk


ACURATE *neo2* Implant Metrics

- Sites averaged 2.9 months between ACURATE *neo2* implants
- Total site volume of ACURATE *neo2* cases was low
 - 72% of physicians had 5 or fewer cases over the course of the trial
 - Only 10% of implanters did more than 10 cases



CRF*

ACURATE *neo2* Cases per Site

ACURATE neo2 Cases per Implanting Physician

Note: Control devices include CoreValve Evolut R, Evolut PRO, Evolut PRO+, and Evolut FX and SAPIEN 3, SAPIEN 3 Ultra

Baseline Characteristics and Medical History

	ACURATE <i>neo2</i> (N=752)	Control (N=748)	Evolut (N=244)	SAPIEN (N=504)
Age (yrs)	78.0±6.9 (752)	79.0±6.5 (748)	78.8±6.0 (244)	79.1±6.8 (504)
Female (%)	52.5% (395/752)	51.2% (383/748)	57.8% (141/244)	48.0% (242/504)
STS Score (%)	2.7±1.8 (752)	2.8±1.9 (748)	2.9±2.1 (244)	2.8±1.8 (504)
Operative Risk Group (Site assessed, CEC-confirmed)				
High/Extreme Operative Risk	25.5% (192/752)	28.6% (214/748)	27.5% (67/244)	29.2% (147/504)
Intermediate Operative Risk	38.6% (290/752)	36.9% (276/748)	38.9% (95/244)	35.9% (181/504)
Low Operative Risk	35.9% (270/752)	34.5% (258/748)	33.6% (82/244)	34.9% (176/504)
Medical History				
Diabetes mellitus (medically treated)	31.6% (238/752)	29.4% (220/748)	33.2% (81/244)	27.6% (139/504)
History of hypertension	89.4% (672/752)	88.0% (658/748)	89.8% (219/244)	87.1% (439/504)
History of AKI	0.3% (2/752)	0.0% (0/748)	0.0% (0/244)	0.0% (0/504)
History of atrial fibrillation	23.0% (173/752)	22.2% (166/748)	22.5% (55/244)	22.0% (111/504)
Prior pacemaker implant	6.4% (48/752)	7.0% (52/748)	7.4% (18/244)	6.7% (34/504)
Prior Stroke	6.9% (52/752)	6.0% (45/748)	7.8% (19/244)	5.2% (26/504)
Pre-procedure Echocardiography (Site-reported)				
Aortic valve area (cm ²)	0.77±0.17 (750)	0.76±0.18 (746)	0.76±0.22 (242)	0.76±0.16 (504)
Mean aortic gradient (mmHg)	44.7±10.8 (746)	44.3±10.4 (744)	44.6±9.8 (242)	44.2±10.8 (502)

Note: Control devices include CoreValve Evolut R, Evolut PRO, Evolut PRO+, and Evolut FX and SAPIEN 3, SAPIEN 3 Ultra

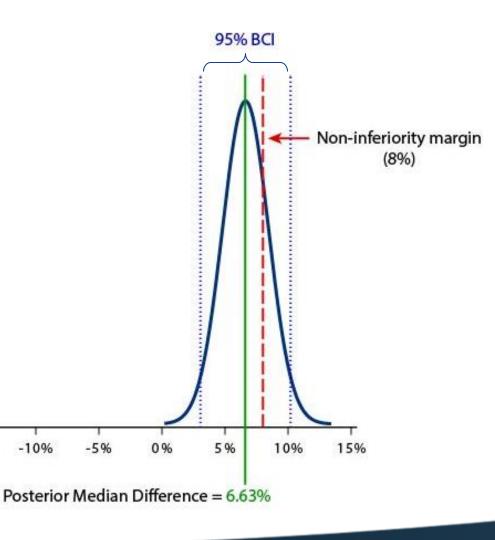
Procedural Characteristics

	ACURATE neo2 (N=752)	Control (N=748)	P-value	Evolut (N=244)	SAPIEN (N=504)
Correct positioning of a single valve into the proper anatomical location	98.4% (721/733)	99.1% (730/737)	0.243	97.5% (235/241)	99.8% (495/496)
Prosthetic aortic valve malpositioning*	1.2% (9/752)	0.9% (7/748)	0.623	2.5% (6/244)	0.2% (1/504)
Valve migration	0.1% (1/752)	0.3% (2/748)	0.624	0.8% (2/244)	0.0% (0/504)
Valve embolization	0.9% (7/752)	0.7% (5/748)	0.568	1.6% (4/244)	0.2% (1/504)
Ectopic valve deployment	0.1% (1/752)	0.7% (5/748)	0.123	2.0% (5/244)	0.0% (0/504)
Conversion to open-heart surgery	0.8% (6/733)	0.3% (2/737)	0.178	0.8% (2/241)	0.0% (0/496)
TAV-in-TAV*	0.7% (5/752)	0.1% (1/748)	0.218	0.0% (0/244)	0.2% (1/504)
Embolic protection device	30.6% (217/710)	26.8% (187/697)	0.122	25.3% (56/221)	27.5% (131/476)
Pre-dilation during index procedure	99.6% (730/733)	33.0% (243/737)	<0.001	48.1% (116/241)	25.6% (127/496)
Post-dilation balloon performed	26.1% (191/733)	11.3% (83/737)	<0.001	14.5% (35/241)	9.7% (48/496)

Note: Control devices include CoreValve Evolut R, Evolut PRO, Evolut PRO+, and Evolut FX and SAPIEN 3, SAPIEN 3 Ultra *CEC-adjudicated; all other data in table is site-reported

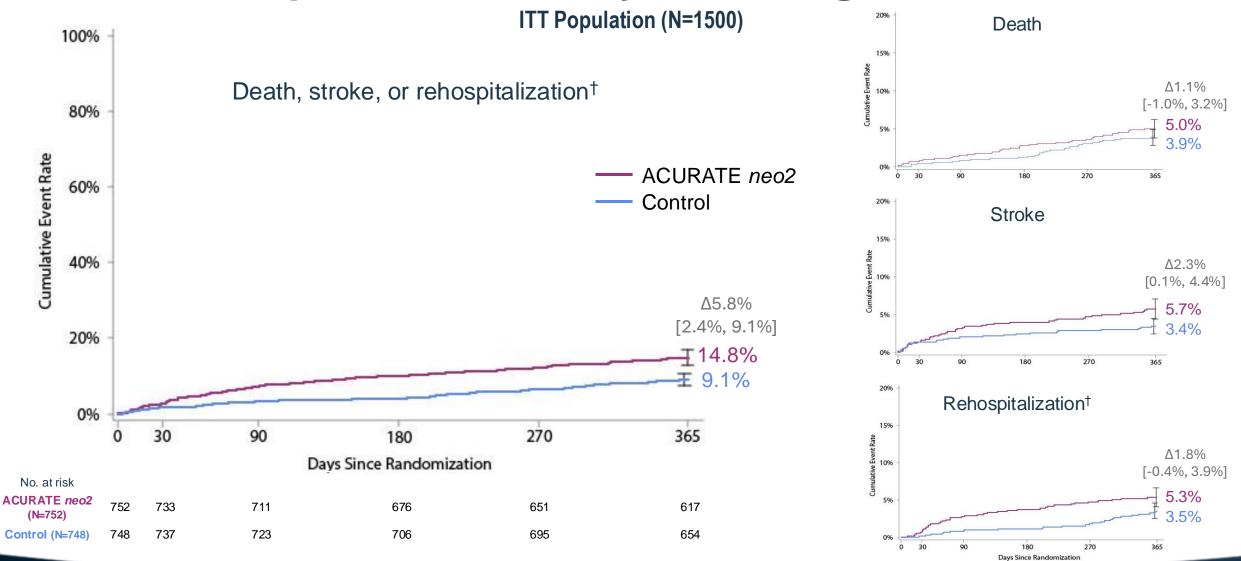
Primary Endpoint – Bayesian Analysis

Hypothesis Test in ITT population


 $PE_{ACURATE} - PE_{Control} < \Delta_{non-inferiority}$

For the primary endpoint of all-cause mortality, stroke or rehospitalization[†] at 1 year

Posterior Median and 95% BCI		Non-Inferiority Test*		
ACURATE neo2	Control	Posterior Median Difference and 95% BCI	Non-inferiority Margin	
16.16% [13.38%,19.07%]	9.53% [7.47%,11.89%]	6.63% [3.04%,10.20%]	8.0%	


Upper bound of 95% BCI exceeds prespecified non-inferiority margin

Non-inferiority of ACURATE *neo2* vs Control for the primary endpoint was not met

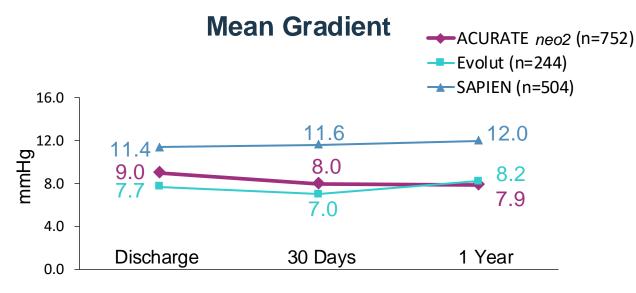
Note: Control devices include CoreValve Evolut R, Evolut PRO, Evolut PRO+, and Evolut FX and SAPIEN 3, SAPIEN 3 Ultra [†] Hospitalization for valve-related symptoms or worsening congestive heart failure (NYHA class III or IV); per VARC-2 definition ^{*} Posterior probability for non-inferiority was 77.9%, which is lower than the non-inferiority test threshold of 97.5%

Kaplan-Meier Analysis through 1 Year

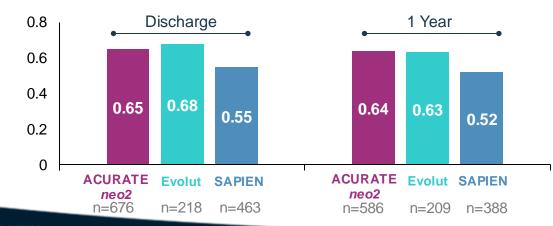
Note: Control devices include CoreValve Evolut R, Evolut PRO, Evolut PRO+, and Evolut FX and SAPIEN 3, SAPIEN 3 Ultra [†]Hospitalization for valve-related symptoms or worsening congestive heart failure (NYHA class III or IV); per VARC-2 definition

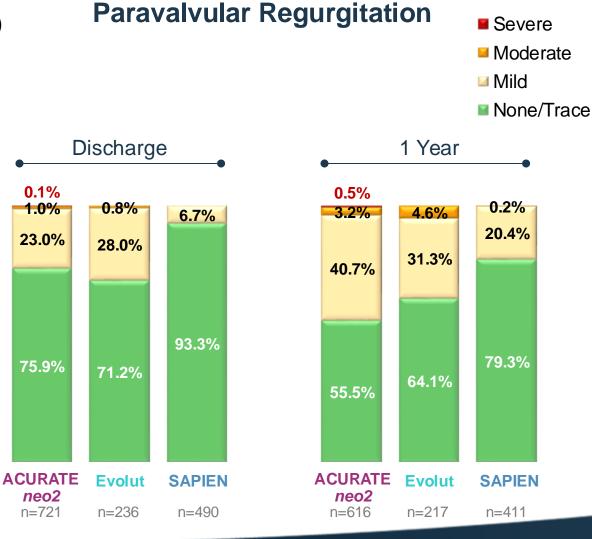
CRF*

Additional Safety Outcomes


Time-to-Event Analysis through 1 Year Post-Procedure, ITT Population (N=1500)

	ACURATE <i>neo2</i> (N=752)	Control (N=748)	Hazard Ratio [95% CI]	Evolut (N=244)	SAPIEN (N=504)
Death	5.0% (36)	3.9% (28)	1.30 [0.80, 2.14]	3.4% (8)	4.1% (20)
Cardiovascular death	3.7% (27)	1.8% (13)	2.10 [1.09, 4.08]	2.5% (6)	1.5% (7)
Stroke	5.7% (41)	3.4% (25)	1.68 [1.02, 2.75]	5.8% (14)	2.3% (11)
Disabling stroke	2.0% (14)	1.2% (9)	1.57 [0.68, 3.64]	2.9% (7)	0.4% (2)
Bleeding	6.2% (45)	6.0% (44)	1.03 [0.68, 1.56]	4.6% (11)	6.8% (33)
Life-threatening or disabling bleeding	3.6% (26)	3.3% (24)	1.09 [0.63, 1.90]	2.1% (5)	3.9% (19)
Acute kidney injury (Stage 2/3)	0.0% (0)	0.0% (0)	NA	0.0% (0)	0.0% (0)
Major vascular complication	3.1% (23)	2.0% (15)	1.55 [0.81, 2.96]	2.5% (6)	1.8% (9)
Access site related	2.6% (19)	1.5% (11)	1.74 [0.83, 3.66]	2.1% (5)	1.2% (6)
Myocardial infarction	2.4% (17)	0.7% (5)	3.47 [1.28, 9.39]	0.9% (2)	0.6% (3)
Periprocedural (≤72 h post index procedure)	0.4% (3)	0.0% (0)	NA	0.0% (0)	0.0% (0)
Spontaneous (>72 h post index procedure)	2.0% (14)	0.7% (5)	2.85 [1.03, 7.91]	0.9% (2)	0.6% (3)
Prosthetic aortic valve thrombosis*	0.7% (5)	2.6% (19)	0.26 [0.10, 0.71]	1.3% (3)	3.3% (16)
New permanent pacemaker implantation	11.2% (82)	12.0% (88)	0.93 [0.69, 1.26]	14.1% (34)	10.9% (54)
New PPI in PM-naïve patients	12.0% (82)	12.8% (88)	0.93 [0.69, 1.26]	15.3% (34)	11.7% (54)
New onset of Atrial fibrillation	2.3% (17)	2.3% (17)	1.01 [0.51, 1.97]	2.9% (7)	2.0% (10)



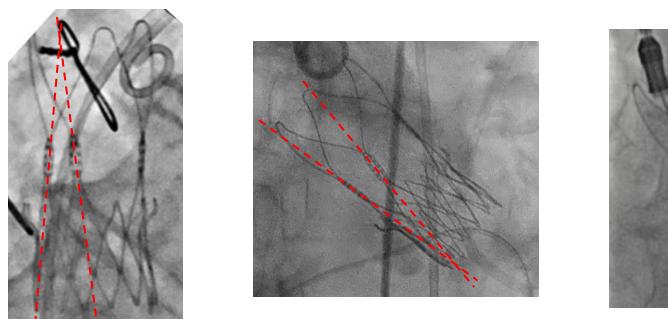

Note: Control devices include CoreValve Evolut R, Evolut PRO, Evolut PRO+, and Evolut FX and SAPIEN 3, SAPIEN 3 Ultra *Clinically evident leaflet thrombosis

Echocardiography Outcomes

Doppler Velocity Index (DVI)

Note: Control devices include CoreValve Evolut R, Evolut PRO, Evolut PRO+, and Evolut FX and SAPIEN 3, SAPIEN 3 Ultra

Review of ACURATE *neo2* **Performance**

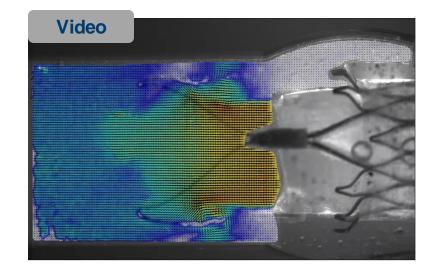

- Despite limited operator experience with ACURATE *neo2*, early outcomes were encouraging
 - Periprocedural outcomes were favorable and comparable to Control
 - Echo parameters (gradient and leak) were as expected
 - No acute safety signals
- COVID-related factors impacted implanter experience with ACURATE *neo2*
 - Extended trial enrollment/length, de-prioritization of investigational cases, and limits on supplies and staffing (both hospital staff & sponsor support)

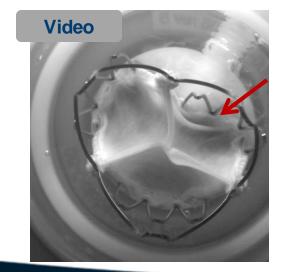
Are there other factors that affected 1-year outcomes?

Retrospective Review

- A post-hoc case review of ACURATE *neo2* implantation evaluated proper valve frame expansion per angiographic imaging
 - > Under-expansion can be identified by non-parallel commissure posts

Valve frame under-expansion was present in ~20% of ACURATE neo2 cases




Bench Testing: Impact of Valve Frame Under-Expansion

Expanded ACURATE *neo2* Max Velocity 1.6 m/s

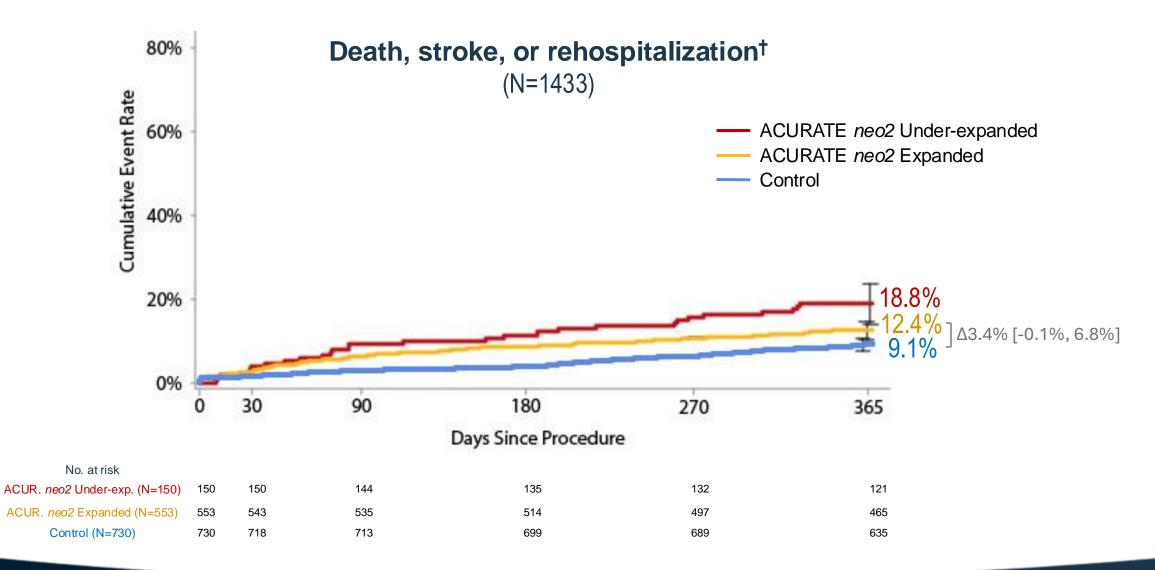
- Laminar flow
- Adequate washout

Under-Expanded ACURATE neo2 Max Velocity 3.1 m/s

- Turbulent flow
- Reduced washout

Post-Hoc Clinical Analysis: Valve Frame Expansion

Time-to-Event Analysis through 1 Year Post-Procedure (N=703)


 Patients with under-expanded valves had increased rates of death (2-fold) and stroke (3-fold) compared to those with well-expanded valves

	Expanded Valve Frame (N=553)	Under-Expanded Valve Frame (N=150)	P-value
Primary Endpoint: Death, stroke, or rehospitalization [†]	12.4% (68)	18.8% (28)	0.050
Individual components			
Death	3.7% (20)	7.4% (11)	0.054
Stroke	3.5% (19)	11.0% (16)	<0.001
Rehospitalization [†]	5.9% (32)	2.7% (4)	0.131

ACURATE neo2

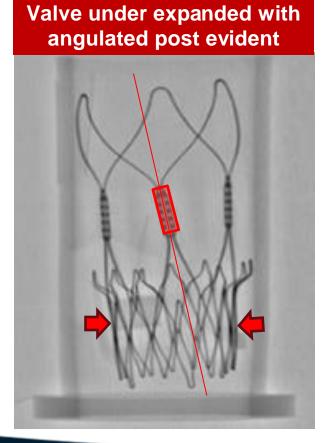

Post-Hoc Clinical Analysis: Valve Frame Expansion

CRF^{*}
TCT

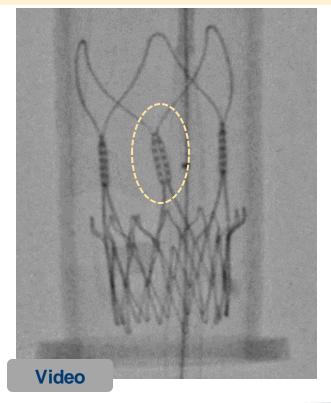
Note: Control devices include CoreValve Evolut R, CoreValve Evolut PRO, Evolut PRO+, and Evolut FX and SAPIEN 3, SAPIEN 3 Ultra ⁺ Hospitalization for valve-related symptoms or worsening congestive heart failure (NYHA class III or IV); per VARC-2 definition

Post-Hoc Clinical Analysis: Valve Frame Expansion

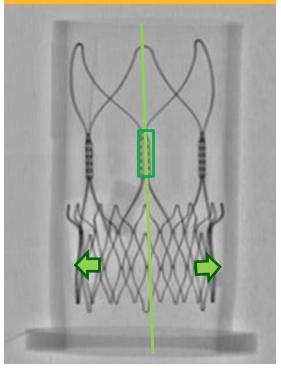
Death and stroke at 1 year are comparable for ACURATE *neo2* Expanded and Control


ACURATE *neo2* Under-Expansion: Potential Associations

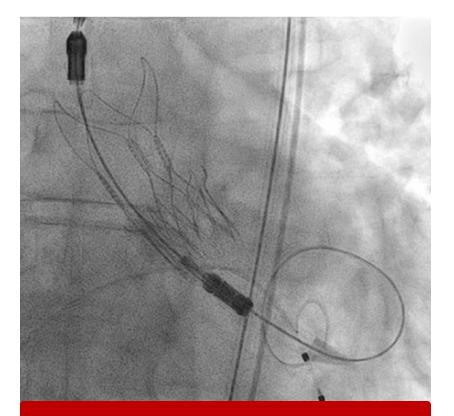
- Valve under-expansion has the potential to impact later clinical outcomes
- Procedural technique may play a role
 - Pre- and post-dilation was inconsistent with commercial practice due to use of smaller-than-recommended balloons, which has an impact on valve expansion
- Optimization of valve expansion is a combination of:
 - Effective pre-dilation
 - Balloon diameter 1 mm smaller than perimeter-derived annular diameter*
 - Recognition of under expansion after valve implantation
 - Angulated posts & 2nd view
 - Improvement of valve expansion by performing post-dilation



Importance of Post-Dilation: Proof of Concept


ACURATE *neo2* under-expansion can be easily recognized and is improved by post-dilation

Post-dil resolves under-expansion & angulation of commissural post


Expanded valve with no angulated post evident

Importance of Post-Dilation: Case Example

Under-expansion is easy to identify and correct during the procedure

ACURATE *neo2* 27mm with ineffective pre-dil (implanted in perimeter-derived diameter of 24.5mm)

CRF*

When is post dilation recommended?

- Gradient ≥10mmHg
- \geq mild PVL
- Valve under expansion New
 - Identified by diameter or non-parallel posts (2nd view)
 - Easy to visualize on ACURATE *neo2* frame

Post-dilation eliminates under expansion

Study Limitations

- Trial-related factors
 - First RCT experience with ACURATE *neo2* enrolled patients of all risks
 - Control arm included two comparator devices, with operator selection of preferred Control at time of randomization
- Enrollment factors
 - COVID impact on staffing resources (hospital & sponsor support); supply constraints; investigational cases deprioritized relative to commercial cases
 - Operators less experienced with ACURATE *neo2* compared to Control devices

ACURATE IDE Trial Key Take-Aways

- The ACURATE IDE Trial is the largest head-to-head trial to evaluate TAVR with ACURATE *neo2*
 - Ability to compare ACURATE *neo2* with commercially available devices was complicated by a challenging trial environment (trial-related and enrollment factors)
- Post-hoc analyses identified ACURATE *neo2* valve under-expansion as a potential factor contributing to clinical outcomes
 - Adverse impact of under-expansion was not evident when evaluating early clinical outcomes, but became apparent at 1 year
 - Patients with well-expanded ACURATE *neo2* valves are comparable to Control for death and stroke at 1 year
 - Recognition of ACURATE *neo2* valve frame under-expansion during procedure allows for post-dilation to optimize valve function

Deep-dive session on the ACURATE IDE study

- Date/Time: Wednesday, October 30th
 12:15-1:30 pm
- Location: Presentation Theater #5 (FDA Theater)
 - Moderator: Michael Joseph Rinaldi
 - Faculty
 - Michael J. Reardon A Closer Look at the ACURATE IDE Study
 - Ole de Backer ACURATE IDE Insights: Optimizing Clinical Implants
 - Janarthanan Sathananthan Summary and Next Steps

